Skip to content

CP2K

Currently Unavailable

Check back soon as we investigate some issues with running CP2K on our computing cluster. If this is a program you'd like to use and would like a notice when it's back in action, just let us know.

Overview

CP2K is a quantum chemistry and solid state physics software package that can perform atomistic simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems.

Availability

Cluster Module/Version
BOSE Currently unavailable
BGSC Not Available

Note: You can simply use

module load cp2k
to activate the most recently installed version of this software.

Arguments / Options

This is a list of arguments for the cp2k command that we wanted to highlight.

Option Description
--help, -h Displays the help message
--check, -c Performs a syntax check of the input
-i Provides an input file name
-o Provides an output file name
--shell, -s Starts interactive shell mode

Sample Slurm Script

submit.sh
#!/bin/bash
# -- SLURM SETTINGS -- #
# [..] other settings here [..]

# The following settings are for the overall request to Slurm
#SBATCH --ntasks-per-node=32     # How many CPU cores do you want to request
#SBATCH --nodes=1                # How many nodes do you want to request

# -- SCRIPT COMMANDS -- #

# Load the needed modules
module load cp2k
cp2k -i <file>.inp

Real Example

Has your research group used CP2K in a project? Contact the HPC Team and we'd be glad to feature your work.

Citation

Please include the following citation in your papers to support continued development of CP2K.

Kuehne,Thomas D.; Iannuzzi,Marcella; Del Ben,Mauro; Rybkin,Vladimir V.; Seewald,Patrick; Stein,Frederick; Laino,Teodoro; Khaliullin,Rustam Z.; Schuett,Ole; Schiffmann,Florian; Golze,Dorothea; Wilhelm,Jan; Chulkov,Sergey; Bani-Hashemian,Mohammad Hossein; Weber,Valery; Borstnik,Urban; Taillefumier,Mathieu; Jakobovits,Alice Shoshana; Lazzaro,Alfio; Pabst,Hans; Mueller,Tiziano; Schade,Robert; Guidon,Manuel; Andermatt,Samuel; Holmberg,Nico; Schenter,Gregory K.; Hehn,Anna; Bussy,Augustin; Belleflamme,Fabian; Tabacchi,Gloria; Gloess,Andreas; Lass,Michael; Bethune,Iain; Mundy,Christopher J.; Plessl,Christian; Watkins,Matt; VandeVondele,Joost; Krack,Matthias; Hutter,Juerg.
The Journal of Chemical Physics, 152 (19), (2020).
CP2K: An electronic structure and molecular dynamics software package -
Quickstep: Efficient and accurate electronic structure calculations.
https://doi.org/10.1063/5.0007045

Schuett, Ole; Messmer, Peter; Hutter, Juerg; VandeVondele, Joost. Electronic Structure Calculations on Graphics Processing Units, John Wiley & Sons, Ltd, 173-190 (2016).
GPU-Accelerated Sparse Matrix-Matrix Multiplication for Linear Scaling Density Functional Theory.
https://doi.org/10.1002/9781118670712.ch8

Heinecke, A; Henry, G; Hutchinson, M; Pabst, H.
Proceedings of Intl. Supercomputing Conference, 981-991 (2016).
LIBXSMM: Accelerating Small Matrix Multiplications by Runtime Code Generation.
https://doi.org/10.1109/SC.2016.83

Borstnik, U; VandeVondele, J; Weber, V; Hutter, J.
PARALLEL COMPUTING, 40 (5-6), 47-58 (2014).
Sparse matrix multiplication: The distributed block-compressed sparse row library.
https://doi.org/10.1016/j.parco.2014.03.012

Hutter, J; Iannuzzi, M; Schiffmann, F; VandeVondele, J.
WIREs Comput Mol Sci., 4 (1), 15-25 (2014).
CP2K: atomistic simulations of condensed matter systems.
https://doi.org/10.1002/wcms.1159

VandeVondele, J; Hutter, J.
JOURNAL OF CHEMICAL PHYSICS, 127 (11), 114105 (2007).
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases.
https://doi.org/10.1063/1.2770708

Krack, M.
THEORETICAL CHEMISTRY ACCOUNTS, 114 (1-3), 145-152 (2005).
Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals.
https://doi.org/10.1007/s00214-005-0655-y

VandeVondele, J; Krack, M; Mohamed, F; Parrinello, M; Chassaing, T; Hutter, J.
COMPUTER PHYSICS COMMUNICATIONS, 167 (2), 103-128 (2005).
QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach.
https://doi.org/10.1016/j.cpc.2004.12.014

Frigo, M; Johnson, SG.
PROCEEDINGS OF THE IEEE, 93 (2), 216-231 (2005).
The design and implementation of FFTW3.
https://doi.org/10.1109/JPROC.2004.840301

VandeVondele, J; Hutter, J.
JOURNAL OF CHEMICAL PHYSICS, 118 (10), 4365-4369 (2003).
An efficient orbital transformation method for electronic structure calculations.
https://doi.org/10.1063/1.1543154

Hartwigsen, C; Goedecker, S; Hutter, J.
PHYSICAL REVIEW B, 58 (7), 3641-3662 (1998).
Relativistic separable dual-space Gaussian pseudopotentials from H to Rn.
https://doi.org/10.1103/PhysRevB.58.3641

Lippert, G; Hutter, J; Parrinello, M.
MOLECULAR PHYSICS, 92 (3), 477-487 (1997).
A hybrid Gaussian and plane wave density functional scheme.
https://doi.org/10.1080/002689797170220

Perdew, JP; Burke, K; Ernzerhof, M.
PHYSICAL REVIEW LETTERS, 77 (18), 3865-3868 (1996).
Generalized gradient approximation made simple.
https://doi.org/10.1103/PhysRevLett.77.3865

Goedecker, S; Teter, M; Hutter, J.
PHYSICAL REVIEW B, 54 (3), 1703-1710 (1996).
Separable dual-space Gaussian pseudopotentials.
https://doi.org/10.1103/PhysRevB.54.1703

Resources